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Abstract 
 
A new approach to calculate the axially symmetric binary gas flow is proposed. Dalton’s law for partial pressures 

contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of 
rarefied axially symmetric flow inside a rotating cylinder by using the time relaxed Monte-Carlo (TRMC) scheme and 
the direct simulation Monte-Carlo (DSMC) method. The results of flow simulations are compared with the analytical 
solution and results obtained by Bird [1]. The results of the flow simulations show better agreement than the results 
obtained by Bird [1] in comparison with the analytical solutions. However, the results of the flow simulations using the 
TRMC scheme show better agreement than those obtained using the DSMC method in comparison with the analytical 
solutions.  
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1. Introduction  

In gas flow problems where the length scale of the 
system is comparable to the mean free path of mole-
cules in the gas flow the concept of the continuum is 
no more valid, Knudsen number greater than 0.1 [1]. 
In this case the simulation is done by using the direct 
simulation Monte-Carlo (DSMC) or the collisional 
Boltzmann equation (CBE) methods [2, 3]. In most 
cases the direct solution of the CBE is impracticable 
due to the huge number of molecules; however, the 
implementation of the DSMC is often more practica-
ble. So far a class of Monte-Carlo method has been 
used to simulate the rarefied gas dynamic problems. 
The rarefied hypersonic flow is solved by using the 
DSMC method by Bird [1]. The comparison between 
the Navier-Stokes and the DSMC methods for the 
simulation of the circumnuclear coma was done by 
Crifo et al. [4]. The simulation of the rarefied gas 
flow through circular tube of finite length in the tran-

sitional regime at both low Knudsen number and high 
Knudsen number is done by using the DSMC method 
by Shinagawa et al. [5]. More recently, Bottoni [6] 
used the molecular approach based upon a Monte-
Carlo simulation for sodium vapor flow of mono-
atomic molecules in liquid metal fast breeder reactor 
bundle. Simulation of flows like recirculation flow 
problems or near continuum flows is still expensive 
due to the particular nature of the DSMC method [7]. 
However, Pareschi et al. [8] proposed a modification 
to the DSMC method to circumvent this problem. 
Pareschi et al. [9] used the time-relaxed Monte-Carlo 
(TRMC) method with the Wild sum expansion [10] 
to approximate the non-negative function describing 
the time evolution of the distribution function of par-
ticles. However, the optimal choice of the coefficients 
in the Wild sum expansion for the distribution func-
tion of particles is left as an open problem. Pareschi et 
al. [11, 12] simulated numerically the Boltzmann 
equation for a two-dimensional gas dynamic flow 
around an obstacle using the TRMC method. Their 
simulation showed improvement over the DSMC 
method in terms of computational efficiency. 
Nourazar et al. [13] compared the simulation of the 
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Navier-Stokes and the Boltzmann equations of the 
axially symmetric compressible flow past a flat-nosed 
cylinder at high velocity and low pressure with shock 
wave using the Monte-Carlo method. The results of 
the two simulations are compared in terms of differ-
ent Knudsen numbers. 

 
1.1 Purpose of the present work 

In the simulation of rarefied gas dynamic problems, 
when the Knudsen number is small, collisions occur 
at a fast rate; therefore, a kinetic treatment (DSMC) of 
the problem is extremely expensive due to the re-
quired small time-step. Since the ratio of time scales 
between macroscopic and microscopic effects is large 
enough, reaching the stationary results of flow char-
acteristics may almost be impossible. 

On the other hand, the TRMC schemes allow the 
use of larger time-steps than those required in the 
DSMC method, therefore allowing one to achieve the 
stationary results of flow properties in a compara-
tively shorter computational time. To our knowledge, 
none of the researchers so far tried to incorporate the 
new idea of using the Dalton’s law for the simulation 
of axially symmetric binary gas flow implementing 
the TRMC scheme. In the present work we intend to 
simulate the flow properties of a binary gas mixture 
(argon and helium) inside a rotating cylinder using 
the TRMC scheme and the DSMC method. The re-
sults of the simulations using the two methods are 
compared with the analytical solutions and the results 
obtained by Bird, [1] for the same case study problem. 
In the simulation using the DSMC we follow exactly 
the same procedures described in Bird, [1], and in the 
simulation using the TRMC we follow exactly the 
same procedures described in Pareschi et al. [12] 

 
1.2 Description of the case study problem 

A cylinder rotates at a tangential velocity of 1000 
meter/second, and the radius of the cylinder is 1 meter. 
The gas mixture inside the cylinder contains 50% 
argon and 50% helium, the initial temperature of the 
gas mixture inside the rotating cylinder is 200 Kelvin, 
and the initial pressure of the gas mixture inside the 
cylinder is 2.76 Pascal absolute. These data are the 
same as those depicted by Bird [1]. 

 
 

2. Mathematical formulations 

2.1 The Boltzmann Equation 

The Boltzmann equation for the temporal evolution 
of particles velocity distribution function for species 
p  is written as [1]: 
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In Eq. (1), n  is the number density of molecules 

of species, f is the probability distribution function 
of the molecules of species having velocity V , 1f  
is the probability distribution function of the mole-
cules of species having velocity 1V , ε  is Knudsen 
number which is equal to the ratio of λ , the mean 
free path between collisions, to the characteristic 
length L . The subscripts p  and q  represent the 
particular species. 

The bilinear collisional operator ( ),p p q qQ n f n f  

that describes the binary collisions of the molecules is 
given by: 
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Where, 

pqrV  is the relative velocity between the 
molecules of species p  and species q  and Ω  is 
a vector of the unitary sphere. The kernel σ  is a non 
negative function which is described as [12]: 
 

( ) ( ),pq pqr rV b V
α

ασ θΩ = ⋅  (3) 
 

Where, θ  is the scattering angle between 
pqrV  

and
pqrV Ω . The variable hard sphere (VHS) [1] 

model is often used in numerical simulation of rare-
fied gases, where, ( )b Cα θ ε=  with C  a positive 
constant and 1α = . The value of C  is equal to [1], 

pqC σ= . 
Substituting Eq. (3) into Eq. (2) one gets the fol-

lowing: 
 

( )
4

* *
1 1 1

1 0

1 ,p p q q

s

p q pq rpq p q p q q
q

Q n f n f

n n V f f f f d d
π

ε

σ
+∞

= −∞

=

⎡ ⎤− Ω ⋅⎣ ⎦∑ ∫ ∫ V
 (4) 



2850  A. A. Ganjaei and S. S. Nourazar / Journal of Mechanical Science and Technology 23 (2009) 2848~2868 
 

 

Substituting the bilinear collisional operator (Eq. 
(4)) into Eq. (1), the Boltzmann equation is written as: 
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In Eq. (5), n  is the number density of molecules 

of species, f is the probability distribution function 
of the molecules of species having velocity V , 1f  
is the distribution function of the molecules of species 
having velocity 1V , *f is the post-collision prob-
ability distribution function of the molecules of spe-
cies having velocity V  and *

1f  is the post-collision 
probability distribution function of the molecules of 
species having velocity 1V . The subscripts p  and 
q  represent the particular species. 

 
2.2 The TRMC Scheme 

In a binary gas mixture flow with two different 
species p and q , the Boltzmann equation can be writ-
ten for the species separately. 
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In the present work the Dalton law is used to calcu-

late the pressure; the pressure of the mixture is calcu-
lated as p qP P P= + , where pP  is the partial pressure 
of the species p, and qP  is the partial pressure of the 
species q. The density of the mixture is calculated 
as m Ar Ar He Hey yρ ρ ρ= + , where mρ  is the mixture 
density, Ary  is the molar fraction of argon, Arρ  is 
the density of argon, Hey  is the molar fraction of 
helium and Heρ  is the density of helium. First, we 
assume that only the argon gas exists inside the rotat-
ing cylinder and the flow is simulated by using the 
TRMC and the DSMC methods. Second, we assume 
that only the helium gas exists inside the rotating 
cylinder and the flow is simulated by using the 
TRMC and the DSMC methods. In both cases the 
effect of collisions of molecules of argon and the 
effect of collisions of molecules of helium are consid-
ered separately, ( ), 0p p q qQ n f n f = . 
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We split Eq. (7) [14] into an equation for the effect 

of collision, ( ) 0p pn f∂ ∂ ≡r , and an equation for 
the effect of convection, ( ), 0p p p pQ n f n f = . The 
equation for the effect of collision is written as [12]: 
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t ε
∂
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 (8) 

 
For simplicity we omit the index and replace 

p pn f with f , where f is the mass density function of 
the molecules of species having velocity V . Then Eq. 
(8) is written as: 
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and the collision term is written as: 
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Where, 
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is the mean collision frequency for the molecules 
having velocity V , ρ  is the density of the gas, m is 
the mass of a molecule of the gas,κ is a molecular 
constant 

4

0 rV d
π

κ σ= Ω∫  and 1f dm
ρ +∞

−∞
= ∫ 1V  

(Wild, 1951). In a special case in which rVσ  is in-
dependent of rV (Maxwellian molecules), we have: 
 

( )
m
κρµ µ= = ⋅V  (11) 

 
Substituting Eqs. (10) and (11) into Eq. (9): 
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The first-order time discretization of Eq. (12) is 
written as: 
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The probabilistic interpretation of Eq. (13) is the 

following. In order a particle is sampled from 1nf + , a 
particle is sampled from nf , with probability of 
( )1 tµ ε− ∆  and a particle is sampled 
from ( ),n nP f f µ , with probability of tµ ε∆ . How-
ever, the above probabilistic interpretation fails if the 
ratio of tµ ε∆ is too large because the coefficient of 

nf on the right hand side may become negative. This 
means that in the stiff region (where the Knudsen 
number is small 1ε << ) the time step becomes ex-
tremely small; therefore, the method becomes almost 
unstable near the fluid regime [15, 16]. 

To circumvent the problem, a new independent 
variable τ  and a new dependent variable ( )V,F τ  
are defined as: 

 
( )1 te µ ετ −= −  (14) 
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Therefore, Eq. (12) is rewritten as: 
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Eq. (16) is the Cauchy problem, and it has a power 

series solution as follows [14]: 
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Substituting Eq. (17) into Eq. (16): 
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Expanding the summation terms: 
 

( )
( )

2 3
1 2 3 4

2 2
0 1 2 0 1 2

2 3 4

,

,

F f f f f

P F F

P f f f f f f

τ τ τ
τ

τ τ τ τ

∂
= + + + +

∂
=

+ + + + + + ⋅

L

L L

 (19) 

 
Substituting Eq. (19) into Eq. (16): 
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Equating the coefficients of corresponding powers 

ofτ , we can find for f as: 
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Therefore, the function f  is found by the recur-
rence formula as: 
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Converting Eq. (17) into original variables we ob-

tain the following formula representing the solution to 
the Cauchy problem 9: 

 

( ) ( ) ( )
0

, 1
kt t

k
k

f v t e e f vµ ε µ ε
∞

− −

=

= − ⋅∑  (23) 

 
A class of numerical schemes based on a suitable 



2852  A. A. Ganjaei and S. S. Nourazar / Journal of Mechanical Science and Technology 23 (2009) 2848~2868 
 

 

truncation for 1m ≥  of Eq. (23) is derived [14]: 
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Where ( )nf f n t= ∆  and t∆  is time step. The quan-
tity M  in Eq. (24) is the asymptotic solution of the 
equation and called Maxwellian. Eq. (24) can be gen-
eralized by using different weight functions including 
the influence of the higher order coefficients. In gen-
eral the TRMC scheme is written as: 
 

1
1

0

m
n

k k m
k

f A f A M+
+

=

= + ⋅∑  (25) 

 
Where, the functions kf  are given by Eq. (22) and 
the weight functions ( )kA τ are non-negative func-
tions that satisfy the consistency, conservative and the 
asymptotic preservation condition (Gabetta et al., 
[14]). In this simulation the first order TRMC of Eq. 
(25) as 

0

1
0 1 1 2

n nf A f A f A M+ = + + is used. 
 

3. Analytical solutions 

The energy E of a particle in an axially symmetric 
gas mixture flow inside a rotating cylinder is given as 
[17], 
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The rotational effect is the same as additional ex-

ternal field acting on the system and may be written 
as: 
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Using the Boltzmann distribution for the particle 

number density and substituting for ( )U r  from Eq. 
(27): 
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Where the normalization factor A  can be deter-
mined by ( )N n r dV= ∫  giving: 
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Then for A can be written: 
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Therefore: 
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Where, N  is the total number of molecules, m  is 
the mass of a molecule of gas, ω  is the angular ve-
locity, k  is the Boltzmann constant, T  is the abso-
lute temperature, L  is the length of the cylinder, R  
is the cylinder radius and r  is the radial distance. 
 
4. Boundary and initial conditions 

4.1 Boundary conditions 

At the boundary where the axis of symmetry exists 
the rule of specular reflection is considered. The 
specular reflection rule is implemented for molecules 
at the solid surface boundary with normal velocity to 
the solid boundary being reversed and those with 
parallel velocity to the solid surface boundary remain-
ing unchanged. At the top and the bottom boundary 
of the cylinder the rule of specular reflection and at 
the wall of the cylinder the rule of diffusion reflection 
are considered. The diffuse reflection rule is imple-
mented for molecules at the solid surface boundary 
with a velocity component equal to the tangential 
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velocity at the cylinder wall equal to 1000 me-
ter/second and the other component of the velocity is 
equal to the most probable velocity according to the 
equilibrium Maxwellian distribution. Therefore, the 
resultant velocity is equal to the velocity that was 
obtained in accordance with the kinetic theory of 
gases. In the diffuse reflection rule the temperature of 
the reflected molecule and the temperature of the 
solid wall boundary are required to be equal, and the 
velocities of the reflected molecules are distributed 
according to equilibrium Maxwellian distribution. 

 
4.2 Initial conditions 

The initial values of the gas mixture pressure and 
the temperature are 2.76 Pascal absolute and 200 
Kelvin, respectively. The molar concentrations of the 
gas mixture inside the cylinder consist of 50% argon 
and 50% helium. The initial velocities of the mole-
cules are obtained based on the kinetic theory. 

 
5. The Numerical procedures 

In the simulation of the problem using the DSMC 
method, two grid systems are chosen. The first grid 
system (Fig. 1) is used to calculate the averaging of 
flow properties. This grid system is chosen to be fine 
enough in order to increase our computational accu-
racy. The grid system is refined up to where the varia-
tions of the flow properties are not substantial (the 
variations of the flow properties less than 2%). The 
second grid system is chosen to be very fine (the 
mesh size is equal to 0.2 times the mean free path of 
the molecules); therefore, the collisions of the mole-
cules are controlled within each mesh accurately. Our 
grid system consists of 5 times 100 meshes and the 
total number of model molecules is 35700. The num-
ber of real molecules is obtained based on the gas 
density and Avogadro’s number where each model 
molecule consists of 5.49735*1015 real molecules. In 
the TRMC scheme the same grid system (5 times 
100) and the same number of model molecules, 
35700, are used. The number of real molecules is  

 

 
 
Fig. 1. The structure of mesh system for the cylinder of radius 
1meter and height of 0.1 meter. 

obtained based on the density of gas and Avogadro’s 
number. For the axially symmetric flows, the distribu-
tion of the modeled molecules is linearly proportional 
to the radial distance. The volume of the mesh far 
from the axis of symmetry is much larger than the 
volume of the mesh close to the axis of symmetry. 
Therefore, the number of the modeled molecules far 
from the axis of symmetry is much greater than the 
number of modeled molecules close to the axis of 
symmetry. This leads to the uniformity of density in 
the radial direction. The size of the mesh is on the 
order of the mean free path, and the time step in our 
simulation is chosen to be 0.2 times the mean colli-
sion time Bird [1]. The molecules are distributed in 
the mesh system according to the normal distribution. 
The initial velocity of the molecules is chosen based 
on the kinetic theory of gases. The direction of veloc-
ity of the molecules is chosen randomly based on 
equilibrium Maxwellian distribution. We then start to 
advance with time and the new position of the mole-
cules is designated. The collisions of the model mole-
cules are done based on the variable hard sphere 
(VHS) model proposed by Bird [1]. We then continue 
advancing in time until the statistical fluctuations of 
the flow properties are minimum. In the simulation of 
gas mixture (argon and helium) the flow inside the 
high speed rotating cylinder the gas mixture pressure 
inside the cylinder is initially 2.76 Pascal absolute, the 
radius of the cylinder is 1 meter, the tangential veloc-
ity at the cylinder wall is 1000 meter/second, the gas 
mixture inside the cylinder consists of 50% argon and 
50% helium, and the temperature of the gas mixture 
inside the cylinder is 200 Kelvin. The total number of 
35700 model molecules is considered to be distrib-
uted linearly along the radial coordinates. The time-
step of the simulation is chosen to be 10-6 second and 
the simulation is done until 25.7 seconds of real time 
(1280000 iterations) in DSMC method. In the TRMC 
scheme the time-step of the simulation is chosen to be 
5*10-6 second and the simulation is done until 25.7 
seconds of real time (256000 iterations). The calcula-
tions are performed by an IBM compatible personal 
computer with 2.8 GHz CPU and 512 MB RAM. 

 
5.1 Algorithm of the Direct Simulation Monte Carlo 

Method (DSMC) 

DSMC Algorithm (for the VHS collision model 
molecules). 
․ 273refT K=  
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․ 102.33 10 ,  refpd for He−= ×  

․ 104.17 10 ,  refqd for Ar−= ×  
․ r p q p qm m m m m+=  

․ 23 11.380658 10  k J K− −= ×  
․ 61 10t Sec−∆ = ×  
․Distribute the initial locations of the particles ac-

cording to the uniform distribution. 
․for tn  = 1 to totn  
。Given{ } , 1, ... ,n

iv i N= . 

。Define the local Knudsen number ( )ε . 
。Calculate  

( )
( ) ( ){ }

( )

1
222

5 2

pq

ref pq

pq

r i j

pq ref pq

k T m
d d

γ

γ

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥Γ −⎢ ⎥
⎢ ⎥⎣ ⎦

v v
. 

。Compute an upper bound  
( ) ( )( )24 pq i jdσ π= −v vmax  for the cross section, 

σ is updated in each collision. 
。Set 4µ πσ= . 
。Set ( )( )/ 2cN Iround N tµ ε= ∆ . 
。Select 2 cN dummy collision pairs ( ),i j  uni-

formly among all possible pairs, and for those. 
。Compute the relative cross-section  

( ) 24ij pq i jdσ π= −v v . 

。Generate uniform random numbers (Rand). 
。if ijRand σ σ<  

- Perform the collision between i  and j , and 
compute the post-collision velocities *

iv and 
*
jv according to the collisional law. 

- Generate two uniform random numbers 1 2,ξ ξ . 
- Set ( )1

1 22 1 , 2α ξ β πξ−= − =cos . 
- Set ( )Tφ β α β α α= cos sin sin sin cos . 

- Set
( )

( )

*

*

1 1 ,
2 2
1 1
2 2

i i j i j

j i j i j

φ

φ

= + + −

= + − −

v v v v v

v v v v v
. 

- Set 1 *n
i i
+ =v v , 1 *n

j j
+ =v v . 

。else 
- Set 1n n

i i
+ =v v , 1n n

j j
+ =v v . 

- Set 1n n
i i
+ =v v  for the 2i cN N−  particles that 

have not been selected. 
․End for 
․Calculate macroscopic properties: 
․macroscopic flow velocity:  

( )0

1
p p q qp qm n m n

ρ
= +v v v , 

․density: .n mρ = , 
․thermal Velocity: 0i i′ = −v v v , 

․temperature: ( )2 21
3 p p p q q qTr

T n m v n m v
kn

+′ ′= , 

․pressure : ( )2 21
3Tr p p p q q q

P nkT n m v n m v′ ′= = + . 

During each step, all the other 2i cN N−  particle 
velocities remain unchanged. 

Here, by Iround(x), we denote a suitable integer 
rounding of a positive real number x. 

In our algorithm, we choose: 
[ ]  

[ ] 1
x

Iround(x) 
x

⎧ ⎫
= ⋅⎨ ⎬+⎩ ⎭

with probability [x] + 1 - x
with probability x - [x]

 

 
5.2 Algorithm of the Time Relaxed Monte Carlo 

Method (TRMC) 

TRMC Algorithm.(first order TRMC scheme for 
the VHS collision model molecules). 
․ 273refT K=  

․ 102.33 10 ,  refpd for He−= ×  

․ 104.17 10 ,  refqd for Ar−= ×  
․ r p q p qm m m m m+=  

․ 23 11.380658 10  k J K− −= ×  
․ 61 10t Sec−∆ = ×  
․Distribute the initial locations of the particles ac-

cording to the uniform distribution. 
․for tn  = 1 to totn  
。Given{ }v , 1, ... ,n

i i N= . 

。Define the local Knudsen number ( )ε . 
。Calculate  

( )
( ) ( ){ }

( )

1
222

5 2

pq

ref pq

pq

r i j

pq ref pq

k T m
d d

γ

γ

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥Γ −⎢ ⎥
⎢ ⎥⎣ ⎦

v v
. 

。Compute an upper bound  

( ) ( )( )24 pq i jdσ π= −v vmax  for the cross 

section, σ is updated in each collision. 
。Set 1 ( / )tτ ρσ ε= − ∆exp . 
。Compute 2 3 3 4

1 2( ) , ( )A Aτ τ τ τ τ τ= − = −  
。Set 1( / 2)cN Iround NA= . 
。Select cN dummy collision pairs ( ),i j  uni-

formly among all possible pairs. 
。Compute the relative cross-section  

( ) 24ij pq i jdσ π= −v v . 
。Generate uniform random numbers (Rand). 
。if ijRand σ σ<  

- Perform the collision between i  and j , and 
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compute the post-collision velocities *
iv and 

*
jv according to the collisional law. 

- Generate two uniform random numbers 1 2,ξ ξ . 
- Set ( )1

1 22 1 , 2α ξ β πξ−= − =cos . 

- Set ( )Tφ β α β α α= cos sin sin sin cos . 

- Set
( )

( )

*

*

1 1 ,
2 2
1 1
2 2

i i j i j

j i j i j

φ

φ

= + + −

= + − −

v v v v v

v v v v v
. 

- Set 1 *n
i i
+ =v v , 1 *n

j j
+ =v v . 

。else 
- Set 1n n

i i
+ =v v , 1n n

j j
+ =v v . 

- Set 1n n
i i
+ =v v  for the 2i cN N−  particles that 

have not been selected. 
- Set 2( )MN Iround NA= . 
- Select MN particles among those that have not 

collided, and compute their mean momentum 
and energy. 

- Sample MN particles from the Maxwellian 
with the above momentum and energy, and re-
place the MN  selected particles with the sam-
pled ones. 

。Set 1n n
i i
+ =v v  for all the 2 c MN N N− −  parti-

cles that have not been selected. 
․End for 

 
                       (a)                                                    (b) 
 

   
                          (c)                                                  (d) 
 
Fig. 2. Number of molecules dependency test: (a) Density, (b) Number density, (c) Temperature, (d) Swirl velocity. 
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․Calculate macroscopic properties: 
․macroscopic flow velocity:  

( )0

1
p p q qp qm n m n

ρ
= +v v v , 

․density: .n mρ = , 
․thermal Velocity: 0i i′ = −v v v , 

․temperature: ( )2 21
3 p p p q q qTr

T n m v n m v
kn

+′ ′= , 

․pressure : ( )2 21
3Tr p p p q q qP nkT n m v n m v= ′ ′= + . 

 
6. The Number of model molecules depend-

ency test 

The number of model molecules dependency test is 
done by using more model molecules in each mesh. 
The simulation is performed by using 35700 model 
molecules in the grid system; however, in the number 
of model molecules dependency test the number of 
model molecules is increased to 57120 in our grid 
system. The results of simulation of flow characteris-
tics for the two cases (35700 model molecules and 
57120 model molecules in the grid system) at 4 sec-
onds of real time of flow simulation are obtained and 
compared with each other. Figs. 2(a), 2(b), 2(c) and 
2(d) show the number of molecules dependency test 
for density, number density, temperature and swirl 
velocity, respectively. Fig. 2(a) shows the number of 
model molecules dependency test for the mixture 
density. The maximum discrepancy between the re-
sults of the simulation of the number of model mole-
cules dependency test for the mixture density for the 
two cases (35700 model molecules and 57120 model 
molecules in the grid system) is less than 4% at 0.625 
meter of radial distance inside the cylinder. Fig. 2(b) 
shows the number of model molecules dependency 
test for number densities of argon and helium. The 
maximum discrepancy between the results of simula-
tion of number of model molecules dependency test 
for the number density of argon and helium for the 
two cases (35700 model molecules and 57120 model 
molecules in the grid system) is less than 7.3% at 
0.625 meter of radial distance inside the cylinder and 
less than 1.35% at 0.1 meter of the radial distance 
inside the cylinder, respectively. Fig. 2(c) shows the 
number of model molecules dependency test for the 
temperature. The maximum discrepancy between the 
results of simulation of the number of model mole-
cules dependency test for the temperature for the two 

cases (35700 model molecules and 57120 model 
molecules in the grid system) is less than 0.66% at 
0.75 meter of radial distance inside the cylinder. Fig. 
2d shows the number of model molecules depend-
ency test for the swirl velocity. The maximum dis-
crepancy between the results of simulation of number 
of model molecules dependency test for the swirl 
velocity for the two cases (35700 model molecules 
and 57120 model molecules in the grid system) is less 
than 4.37% at 0.625 meter of radial distance inside 
the cylinder. 

 

7. Discussion of results 

Fig. 3(a) shows the comparison of the results of 
simulations using the DSMC method and the TRMC 
scheme with the results of Bird, [1] for the variations 
of the swirl velocity along the radial coordinates. 
Comparison of our results of simulation using the 
DSMC method for the swirl velocity with the results 
of Bird [1] shows good agreement at 0.2 second of 
real time (10000 iterations); however, comparisons of  
our results of simulations using the DSMC method at 
25.7 seconds of real time (1280000 iterations) and the 
results of simulation using the TRMC scheme at 25.7 
seconds of real time (256000 iterations) with the re-
sults of Bird, [1] show high discrepancies. The dis-
crepancies are due to the lack of sufficient real time 
(number of iterations) in the calculation of the Bird 
[1] simulation. In that simulation the DSMC method 
is used; however, larger time-steps are not allowed 
[12]; therefore, one is not able to reach the stationary 
flow simulation. Comparisons of our results of simu-
lation using the DSMC method at 25.7 seconds of 
real time (1280000 iterations) for the swirl velocity 
with the results of simulation using the TRMC 
scheme at 25.7 seconds of real time (256000 itera-
tions) show good agreement. Fig. 3(b) shows the time 
evolution of the variations of swirl velocity along the 
radial coordinates for different iterations (10000 to 
1280000 iterations). Fig. 4(a) shows the comparison 
of the results of simulations using the DSMC method 
and the TRMC scheme with the results of Bird [1] for 
the variations of the gas mixture (argon and helium) 
temperature along the radial coordinates. Comparison 
of the results of simulation using the DSMC method 
for the gas mixture (argon and helium) temperature 
with the results of Bird, [1] shows good agreement at 
0.2 second of real time (10000 iterations). However, 
comparisons of our results of simulations using the 



 A. A. Ganjaei and S. S. Nourazar / Journal of Mechanical Science and Technology 23 (2009) 2848~2868 2857 
 

  

DSMC method at 25.7 seconds of real time (1280000 
iterations) and the results of simulation using the  
TRMC scheme at 25.7 seconds of real time (256000 
iterations) with the results of Bird, [1] show high 
discrepancies. The discrepancies are due to the lack of 
sufficient real time of computing (number of itera-
tions) in the Bird, [1] calculations. This is because in 
the Bird calculations using the DSMC method one is 
unable to choose larger time steps; however, in the 
simulation using the TRMC scheme one is allowed to 

choose larger time-steps (see [12]), therefore reaching 
larger real time for calculations. Comparisons of our 
results of simulation using the DSMC method at 25.7 
seconds of real time (1280000 iterations) for the gas 
mixture (argon and helium) temperature with the 
results of simulation using the TRMC scheme at 25.7 
seconds of real time (256000 iterations) show good 
agreement. Fig. 4(b) shows the time evolution of the 
variations of the gas mixture (argon and helium) tem-
perature along the radial coordinates for different  

    
                         (a)                                                    (b) 
 
Fig. 3. Swirl velocity: (a) Comparison between the results of simulation using the DSMC method, the TRMC scheme and the
results of Bird, 1994 for the variations of the swirl velocity along the radial coordinates, (b) Time evolution of the variations of
swirl velocity along the radial coordinates from the 0.25 second of real time (12500 iterations) up to 25.7 seconds of real time 
(1280000 iterations). 

 

    
                           (a)                                                 (b) 
 
Fig. 4. Temperature: (a) Comparison between the results of simulation using the DSMC method, the TRMC scheme and the
results of Bird, 1994 for the variations of the temperature along the radial coordinates, (b) Time evolution of the variations of
temperature along the radial coordinates from the 0.25 second of real time (12500 iterations) up to 25.7 seconds of real time
(1280000 iterations). 
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Fig. 5. Comparison between the results of simula-tions using 
the DSMC method, the TRMC scheme for the variations of 
the gas mixture (argon and helium) pressure along the radial 
coordinates. 
 
iterations (10000 to 1280000 iterations). Fig. 5 shows 
the comparison of the results of simulations using the 
DSMC method with the TRMC scheme for the varia-
tions of the gas mixture (argon and helium) pressure 
along the radial coordinates. Fig. 5 shows that at 25.7 
seconds of real time (1280000 iterations) the values 
of pressure around the wall of the cylinder are ap-
proximately 18 times bigger than the values of pres-
sure around the center of the cylinder. 

 
7.1 Comparisons of number density results with the 

analytical solution 

The analytical solution of Kuo [17] is only used 
here as a reference to make the comparison of the 
results of the present simulation, since the solution of 
Kuo [17] is based on the assumption that the flow is 
in equilibrium. Here in the present simulation one 
assumes that the results of our simulation reached the 
equilibrium condition as well. However, this assump-
tion is not completely valid. Therefore, the analytical 
solution of Kuo [17] can only be used as a reference 
and not as an absolute source to judge the accuracy of 
the TRMC scheme. 

Figs. 6(a), 6(b) and 6(c) show the comparisons be-
tween the DSMC method, the TRMC scheme and the 
results of Bird [1] with the analytical solution for the 
variations of the density of gas mixture, the number 
density of helium and the number density of argon 
along the radial coordinates, respectively. Compari-
son of our results of simulation for the density of the 
gas mixture [Fig. 6(a)] with the analytical solution  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. He number density, Ar number density and Density: 
(a) Comparison between the DSMC scheme, the TRMC 
scheme and the results of Bird 1994 with the analytical solu-
tion for the variations of the number density of helium along 
the radial coordinates, (b) Comparison between the DSMC 
scheme, the TRMC scheme and the results of Bird 1994 with 
the analytical solution for the variations of the number den-
sity of Argon along the radial coordinates, (c) Comparison 
between the DSMC scheme, the TRMC scheme and the 
results of Bird 1994 with the analytical solution for the varia-
tions of the density along the radial coordinates. 
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shows reasonable agreement, and the agreement is 
pronounced for the radial distance of 0.5r m> ; how-
ever, the comparison of our results of simulation us-
ing the DSMC and the TRMC with the analytical 
solution shows better agreement than the results of 
Bird, [1] [Fig. 6(a)]. Comparison of our results of 
simulation for the number density of helium [Fig. 
6(b)] with the analytical solution shows reasonable 
agreement, and the agreement is pronounced for a 
radial distance of 0.5r m> . However, comparison of 
the results of simulation of Bird, [1] for the number 
density of helium [Fig. 6(b)] with the analytical solu-
tion shows high discrepancies. The discrepancies of 
the Bird results are due to the lack of sufficient real 
time in the simulation using the DSMC method. In 
the simulation using the DSMC method, one is not 
allowed to choose larger time-steps; therefore, reach-
ing the larger real time is very difficult. However, in 
the simulation using the TRMC scheme, one is al-
lowed to choose larger time-steps in order to reach 
larger real time. Comparison of our results of simula-
tion for the number density of argon [Fig. 6(c)] with 
the analytical solution shows better agreement than 
the comparison of the results of simulation of Bird [1] 
for the number density of argon [Fig. 6(c)] with the 
analytical solution. 

 
8. Conclusions 

The comparison of the results of simulation using 
the DSMC method with the results of simulation us-
ing the TRMC scheme for the swirl velocity and the 
temperature show good agreement. However, the 
comparisons of the results for the swirl velocity and 
the temperature of Bird [1] with the analytical solu-
tion show high discrepancies. The comparisons of the 
results of simulations using the DSMC method and 
the TRMC scheme with the analytical solution for the 
density, number density of helium and number den-
sity of argon show good agreement. However, the 
comparisons of the results for the density, number 
density of Helium and number density of argon of 
Bird [1] show high discrepancies. The conclusions are 
summarized as follows: 

Due to the required small time-steps in the DSMC 
simulations, the discrepancies of the results using the 
DSMC method are pronounced in comparison with 
the results of simulations using the TRMC scheme. 

The comparisons of the results of simulations using 
the TRMC scheme for the density and the number 

density with the analytical solution show better 
agreement than those obtained by DSMC method. 

Having larger time-steps in the simulation using 
the TRMC scheme allows one to reach stationary 
results for the flow characteristics in shorter time; 
therefore, the results of simulations using the TRMC 
scheme show improvement over the results of simula-
tions using the DSMC method. In the present simula-
tion, there are two sources of approximation errors: 
the approximation errors inherent in the selection of 
larger time-step used in the TRMC scheme, and the 
approximation errors due to modeling the molecular 
collision, the VHS model, used in the present work. 
These two sources of approximation errors interact 
with each other. The nature of the interaction of the 
two sources of approximation errors is very compli-
cated. However, the results of our simulation in the 
present work show that the approximation errors in-
herent in the selection of larger time-steps in the 
TRMC scheme counteract the other sources of ap-
proximation errors inherent in the simulation model-
ing, such as modeling of molecular collisions, the 
VHS model, used in the present work. Therefore the 
results of simulation, using the TRMC scheme, show 
improvement over the results of simulation using the 
DSMC method. 
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